Solving a Mixed Problem with Almost Regular Boundary Condition By the Contour Integral Method
نویسندگان
چکیده
منابع مشابه
A Boundary Integral Method for Solving Inverse Heat Conduction Problem
In this paper, a boundary integral method is used to solve an inverse heat conduction problem. An algorithm for the inverse problem of the one dimensional case is given by using the fundamental solution. Numerical results show that our algorithm is effective.
متن کاملMIXED BOUNDARY VALUE PROBLEM FOR A QUARTER-PLANE WITH A ROBIN CONDITION
We consider a mixed boundary value problem for a quarter-plane with a Robin condition on one edge. We have developed two procedures, one based on the advanced theory of dual integral equations and the other, in our opinion simpler technique, relying on conformal mapping. Both of the procedures are of interest, because the former may be easier to adapt to other boundary value problems.
متن کاملSolving Mixed Dielectric/conducting Scattering Problem Using Adaptive Integral Method
This paper presents the adaptive integral method (AIM) utilized to solve scattering problem of mixed dielectric/conducting objects. The scattering problem is formulated using the Poggio-MillerChang-Harrington-Wu-Tsai (PMCHWT) formulation and the electric field integral equation approach for the dielectric and conducting bodies, respectively. The integral equations solved using these approaches ...
متن کاملOn the Boundary Integral Equation Method for a Mixed Boundary Value Problem of the Biharmonic Equation
This paper is concerned with weak solution of a mixed boundary value problem for the biharmonic equation in the plane. Using Green’s formula, the problem is converted into a system of Fredholm integral equations for the unknown data on different part of the boundary. Existence and uniqueness of the solutions of the system of boundary integral equations are established in appropriate Sobolev spa...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematics Research
سال: 2017
ISSN: 1916-9809,1916-9795
DOI: 10.5539/jmr.v9n1p158